3.315 \(\int \frac {\sqrt {a+b x^2+c x^4}}{x^3 (d+e x^2)} \, dx\)

Optimal. Leaf size=361 \[ \frac {\sqrt {a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d^2}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}-\frac {b e \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} d^2}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} d^2}-\frac {\sqrt {a+b x^2+c x^4}}{2 d x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a} d}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 d} \]

[Out]

-1/4*b*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d/a^(1/2)+1/2*e*arctanh(1/2*(b*x^2+2*a)/a^(1/2)/
(c*x^4+b*x^2+a)^(1/2))*a^(1/2)/d^2-1/4*b*e*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d^2/c^(1/2)-
1/4*(-b*e+2*c*d)*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/d^2/c^(1/2)+1/2*arctanh(1/2*(2*c*x^2+b
)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))*c^(1/2)/d+1/2*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x^2)/(a*e^2-b*d*e+c*d^2)^(1
/2)/(c*x^4+b*x^2+a)^(1/2))*(a*e^2-b*d*e+c*d^2)^(1/2)/d^2-1/2*(c*x^4+b*x^2+a)^(1/2)/d/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.51, antiderivative size = 361, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 8, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.276, Rules used = {1251, 960, 732, 843, 621, 206, 724, 734} \[ \frac {\sqrt {a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 d^2}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}-\frac {b e \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} d^2}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} d^2}-\frac {\sqrt {a+b x^2+c x^4}}{2 d x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a} d}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/(x^3*(d + e*x^2)),x]

[Out]

-Sqrt[a + b*x^2 + c*x^4]/(2*d*x^2) - (b*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[a]
*d) + (Sqrt[a]*e*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2) + (Sqrt[c]*ArcTanh[(b + 2
*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(2*d) - (b*e*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c
*x^4])])/(4*Sqrt[c]*d^2) - ((2*c*d - b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*Sqrt[
c]*d^2) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2
]*Sqrt[a + b*x^2 + c*x^4])])/(2*d^2)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[p/(e*(m + 1)), Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)^
(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ
[2*c*d - b*e, 0] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&  !ILtQ[m + 2*p + 1, 0] && IntQua
draticQ[a, b, c, d, e, m, p, x]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x^2+c x^4}}{x^3 \left (d+e x^2\right )} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x^2 (d+e x)} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (\frac {\sqrt {a+b x+c x^2}}{d x^2}-\frac {e \sqrt {a+b x+c x^2}}{d^2 x}+\frac {e^2 \sqrt {a+b x+c x^2}}{d^2 (d+e x)}\right ) \, dx,x,x^2\right )\\ &=\frac {\operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x^2} \, dx,x,x^2\right )}{2 d}-\frac {e \operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{x} \, dx,x,x^2\right )}{2 d^2}+\frac {e^2 \operatorname {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{d+e x} \, dx,x,x^2\right )}{2 d^2}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 d x^2}+\frac {\operatorname {Subst}\left (\int \frac {b+2 c x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d}+\frac {e \operatorname {Subst}\left (\int \frac {-2 a-b x}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}-\frac {e \operatorname {Subst}\left (\int \frac {b d-2 a e+(2 c d-b e) x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 d x^2}+\frac {b \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d}+\frac {c \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d}-\frac {(a e) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 d^2}-\frac {(b e) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}-\frac {(2 c d-b e) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}-\frac {(e (b d-2 a e)-d (2 c d-b e)) \operatorname {Subst}\left (\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 d^2}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 d x^2}-\frac {b \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 d}+\frac {c \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d}+\frac {(a e) \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^2}{\sqrt {a+b x^2+c x^4}}\right )}{d^2}-\frac {(b e) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 d^2}-\frac {(2 c d-b e) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 d^2}+\frac {(e (b d-2 a e)-d (2 c d-b e)) \operatorname {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 d^2}\\ &=-\frac {\sqrt {a+b x^2+c x^4}}{2 d x^2}-\frac {b \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {a} d}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{2 d}-\frac {b e \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} d^2}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} d^2}+\frac {\sqrt {c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 165, normalized size = 0.46 \[ \frac {2 \sqrt {a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac {-2 a e+b d-b e x^2+2 c d x^2}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )+\frac {(2 a e-b d) \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{\sqrt {a}}-\frac {2 d \sqrt {a+b x^2+c x^4}}{x^2}}{4 d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/(x^3*(d + e*x^2)),x]

[Out]

((-2*d*Sqrt[a + b*x^2 + c*x^4])/x^2 + ((-(b*d) + 2*a*e)*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^
4])])/Sqrt[a] + 2*Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + 2*c*d*x^2 - b*e*x^2)/(2*Sqrt[c*d^2 - b*d*
e + a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(4*d^2)

________________________________________________________________________________________

fricas [A]  time = 1.49, size = 1094, normalized size = 3.03 \[ \left [\frac {2 \, \sqrt {c d^{2} - b d e + a e^{2}} a x^{2} \log \left (-\frac {{\left (8 \, c^{2} d^{2} - 8 \, b c d e + {\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{4} - 8 \, a b d e + 8 \, a^{2} e^{2} + {\left (b^{2} + 4 \, a c\right )} d^{2} + 2 \, {\left (4 \, b c d^{2} + 4 \, a b e^{2} - {\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} \sqrt {c d^{2} - b d e + a e^{2}} {\left ({\left (2 \, c d - b e\right )} x^{2} + b d - 2 \, a e\right )}}{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}\right ) - {\left (b d - 2 \, a e\right )} \sqrt {a} x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) - 4 \, \sqrt {c x^{4} + b x^{2} + a} a d}{8 \, a d^{2} x^{2}}, \frac {4 \, \sqrt {-c d^{2} + b d e - a e^{2}} a x^{2} \arctan \left (-\frac {\sqrt {c x^{4} + b x^{2} + a} \sqrt {-c d^{2} + b d e - a e^{2}} {\left ({\left (2 \, c d - b e\right )} x^{2} + b d - 2 \, a e\right )}}{2 \, {\left ({\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{4} + a c d^{2} - a b d e + a^{2} e^{2} + {\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x^{2}\right )}}\right ) - {\left (b d - 2 \, a e\right )} \sqrt {a} x^{2} \log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{4}}\right ) - 4 \, \sqrt {c x^{4} + b x^{2} + a} a d}{8 \, a d^{2} x^{2}}, \frac {{\left (b d - 2 \, a e\right )} \sqrt {-a} x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) + \sqrt {c d^{2} - b d e + a e^{2}} a x^{2} \log \left (-\frac {{\left (8 \, c^{2} d^{2} - 8 \, b c d e + {\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{4} - 8 \, a b d e + 8 \, a^{2} e^{2} + {\left (b^{2} + 4 \, a c\right )} d^{2} + 2 \, {\left (4 \, b c d^{2} + 4 \, a b e^{2} - {\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} \sqrt {c d^{2} - b d e + a e^{2}} {\left ({\left (2 \, c d - b e\right )} x^{2} + b d - 2 \, a e\right )}}{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}\right ) - 2 \, \sqrt {c x^{4} + b x^{2} + a} a d}{4 \, a d^{2} x^{2}}, \frac {2 \, \sqrt {-c d^{2} + b d e - a e^{2}} a x^{2} \arctan \left (-\frac {\sqrt {c x^{4} + b x^{2} + a} \sqrt {-c d^{2} + b d e - a e^{2}} {\left ({\left (2 \, c d - b e\right )} x^{2} + b d - 2 \, a e\right )}}{2 \, {\left ({\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{4} + a c d^{2} - a b d e + a^{2} e^{2} + {\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x^{2}\right )}}\right ) + {\left (b d - 2 \, a e\right )} \sqrt {-a} x^{2} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{4} + a b x^{2} + a^{2}\right )}}\right ) - 2 \, \sqrt {c x^{4} + b x^{2} + a} a d}{4 \, a d^{2} x^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x, algorithm="fricas")

[Out]

[1/8*(2*sqrt(c*d^2 - b*d*e + a*e^2)*a*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^4 - 8*a*b*d*e +
8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a
)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x^2 + d^2)) - (b*d - 2*a*e)*
sqrt(a)*x^2*log(-((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4
) - 4*sqrt(c*x^4 + b*x^2 + a)*a*d)/(a*d^2*x^2), 1/8*(4*sqrt(-c*d^2 + b*d*e - a*e^2)*a*x^2*arctan(-1/2*sqrt(c*x
^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*
x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - (b*d - 2*a*e)*sqrt(a)*x^2*log(-((b^2
 + 4*a*c)*x^4 + 8*a*b*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(a) + 8*a^2)/x^4) - 4*sqrt(c*x^4 + b*x
^2 + a)*a*d)/(a*d^2*x^2), 1/4*((b*d - 2*a*e)*sqrt(-a)*x^2*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqr
t(-a)/(a*c*x^4 + a*b*x^2 + a^2)) + sqrt(c*d^2 - b*d*e + a*e^2)*a*x^2*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a
*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2
 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d*e*x
^2 + d^2)) - 2*sqrt(c*x^4 + b*x^2 + a)*a*d)/(a*d^2*x^2), 1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*a*x^2*arctan(-1/2
*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e +
a*c*e^2)*x^4 + a*c*d^2 - a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) + (b*d - 2*a*e)*sqrt(-a)*x^2*
arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(b*x^2 + 2*a)*sqrt(-a)/(a*c*x^4 + a*b*x^2 + a^2)) - 2*sqrt(c*x^4 + b*x^2 +
a)*a*d)/(a*d^2*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.52, size = 216, normalized size = 0.60 \[ \frac {{\left (c d^{2} - b d e + a e^{2}\right )} \arctan \left (-\frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e - a e^{2}}}\right )}{\sqrt {-c d^{2} + b d e - a e^{2}} d^{2}} + \frac {{\left (b d - 2 \, a e\right )} \arctan \left (-\frac {\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}}{\sqrt {-a}}\right )}{2 \, \sqrt {-a} d^{2}} + \frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} b + 2 \, a \sqrt {c}}{2 \, {\left ({\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )}^{2} - a\right )} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x, algorithm="giac")

[Out]

(c*d^2 - b*d*e + a*e^2)*arctan(-((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e -
a*e^2))/(sqrt(-c*d^2 + b*d*e - a*e^2)*d^2) + 1/2*(b*d - 2*a*e)*arctan(-(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))
/sqrt(-a))/(sqrt(-a)*d^2) + 1/2*((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*b + 2*a*sqrt(c))/(((sqrt(c)*x^2 - sqr
t(c*x^4 + b*x^2 + a))^2 - a)*d)

________________________________________________________________________________________

maple [B]  time = 0.02, size = 1009, normalized size = 2.80 \[ -\frac {a e \ln \left (\frac {\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, d^{2}}+\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, c \,x^{2}}{2 a d}+\frac {b \ln \left (\frac {\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, d}-\frac {c \ln \left (\frac {\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {2 a \,e^{2}-2 d e b +2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{2 \sqrt {\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, e}+\frac {\sqrt {a}\, e \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{2 d^{2}}-\frac {b \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{4 \sqrt {a}\, d}-\frac {b e \ln \left (\frac {c \,x^{2}+\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{4 \sqrt {c}\, d^{2}}+\frac {b e \ln \left (\frac {\left (x^{2}+\frac {d}{e}\right ) c +\frac {b e -2 c d}{2 e}}{\sqrt {c}}+\sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\right )}{4 \sqrt {c}\, d^{2}}+\frac {\sqrt {c}\, \ln \left (\frac {c \,x^{2}+\frac {b}{2}}{\sqrt {c}}+\sqrt {c \,x^{4}+b \,x^{2}+a}\right )}{2 d}-\frac {\sqrt {c}\, \ln \left (\frac {\left (x^{2}+\frac {d}{e}\right ) c +\frac {b e -2 c d}{2 e}}{\sqrt {c}}+\sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\right )}{2 d}+\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, b}{2 a d}-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, e}{2 d^{2}}+\frac {\sqrt {\left (x^{2}+\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-d e b +c \,d^{2}}{e^{2}}}\, e}{2 d^{2}}-\frac {\left (c \,x^{4}+b \,x^{2}+a \right )^{\frac {3}{2}}}{2 a d \,x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x)

[Out]

-1/2/d^2*e*(c*x^4+b*x^2+a)^(1/2)-1/4/d^2*e*b*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))/c^(1/2)+1/2/d^2*e
*a^(1/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)+1/2*e/d^2*((x^2+d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+
(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/4*e/d^2*ln(((x^2+d/e)*c+1/2*(b*e-2*c*d)/e)/c^(1/2)+((x^2+d/e)^2*c+(b*e-2*c*d)
*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b-1/2/d*ln(((x^2+d/e)*c+1/2*(b*e-2*c*d)/e)/c^(1/2)+((x^2+
d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^(1/2)-1/2*e/d^2/((a*e^2-b*d*e+c*d^2)/e^2)^(
1/2)*ln(((b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b
*e-2*c*d)*(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a+1/2/d/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((
b*e-2*c*d)*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b*e-2*c*d)*
(x^2+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*b-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)
*(x^2+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x^2+d/e)^2*c+(b*e-2*c*d)*(x^2+d/e)/
e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*c-1/2/d/a/x^2*(c*x^4+b*x^2+a)^(3/2)+1/2/d*b/a*(c*x^4+b*x^2+a)^(1/
2)-1/4/d*b/a^(1/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(1/2))/x^2)+1/2/d/a*c*(c*x^4+b*x^2+a)^(1/2)*x^2+1/2
/d*c^(1/2)*ln((c*x^2+1/2*b)/c^(1/2)+(c*x^4+b*x^2+a)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {c x^{4} + b x^{2} + a}}{{\left (e x^{2} + d\right )} x^{3}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/x^3/(e*x^2+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/((e*x^2 + d)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {c\,x^4+b\,x^2+a}}{x^3\,\left (e\,x^2+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2 + c*x^4)^(1/2)/(x^3*(d + e*x^2)),x)

[Out]

int((a + b*x^2 + c*x^4)^(1/2)/(x^3*(d + e*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a + b x^{2} + c x^{4}}}{x^{3} \left (d + e x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/x**3/(e*x**2+d),x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/(x**3*(d + e*x**2)), x)

________________________________________________________________________________________